Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hyeon Mo Cho, Jeffrey S. Moore

 and Scott R. Wilson*University of Illinois, School of Chemical Sciences, 505 South Mathews Avenue, Urbana, Illinois 61801, USA

Correspondence e-mail: srwilson@uiuc.edu

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.021$
$w R$ factor $=0.056$
Data-to-parameter ratio $=20.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N^{\prime}-Bis(3-iodophenyl)ethylenediimine

In the crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{~N}_{2}$, the molecule lies on a crystallographic inversion center, and hence the two imine groups are mutually trans.

Received 29 September 2005 Accepted 14 October 2005 Online 22 October 2005

Comment

Molecules containing the 1,4-diaza-1,3-butadiene skeleton are interesting because of their versatile coordination behavior and the properties of their metal complexes (van Koten \& Vrieze, 1982). The central diimine group of the title compound, (I), is planar. The angle between the planes of the diimine group and each benzene ring is $7.4(3)^{\circ}$.

(I)

Experimental

The title compound was prepared by the reaction of glyoxal in water with 2 equivalents of 3 -iodoaniline in propan-1-ol at room temperature (Kliegman \& Barnes, 1970). The product was recrystallized from diethyl ether solution at room temperature. Single crystals suitable for X-ray diffraction were grown at room temperature by evaporation of a tetrahydrofuran solution. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $8.30(s, 2 \mathrm{H}), 7.66-7.63(m, 4 \mathrm{H}), 7.24(s$, $2 \mathrm{H}), 7.17(t, 2 \mathrm{H})$. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{~N}_{2}: 459.8933$; found: 459.8933.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{I}_{2} \mathrm{~N}_{2}$
$M_{r}=460.04$
Monoclinic, $C 2 / c$
$a=16.262$ (4) A
$b=4.7074$ (11) \AA
$c=18.708(4) \AA$
$\beta=98.829(4)^{\circ}$
$V=1415.2(6) \AA^{3}$
$Z=4$

Data collection

Siemens SMART/Platform CCD area-detector diffractometer ω scans
Absorption correction: integration (XPREP in SHELXTL; Bruker, 2001)
$T_{\text {min }}=0.295, T_{\text {max }}=0.771$
6991 measured reflections
$D_{x}=2.159 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 879
reflections
$\theta=2.6-28.3^{\circ}$
$\mu=4.43 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Tabular, yellow
$0.34 \times 0.24 \times 0.06 \mathrm{~mm}$

1760 independent reflections
1607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-21 \rightarrow 21$
$k=-6 \rightarrow 6$
$l=-24 \rightarrow 24$

organic papers

Refinement

Refinement on F^{2} $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.056$
$S=1.06$
1760 reflections
88 parameters
H -atom parameters constrained

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0295 P)^{2}\right. \\
& +1.6495 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.79 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Bruker, 2001)
Extinction coefficient: 0.0047 (2)

H atoms were included as riding idealized contributors, with $\mathrm{C}-$ $\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: XCIF (Bruker, 2001).

The Materials Chemistry Laboratory at the University of Illinois is supported in part by grants NSF CHE 95-03145 and NSF CHE 03-43032 from the National Science Foundation. This work was supported by the Postdoctoral Fellowship

Figure 1
A plot of (I), with 50% probability displacement ellipsoids. H atoms are shown as small circles of arbitrary size. Unlabeled atoms are related to labeled atoms by the symmetry operator $(-x, 1-y, 1-z)$.

Program of Korea Science and Engineering Foundation (KOSEF, 2004).

References

Bruker (2001). SAINT (Version 6.22), SHELXTL (Version 6.12), SMART (Version 5.625) and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA Kliegman, J. M. \& Barnes, R. K. (1970). J. Org. Chem. 35, 3140-3143. Koten, G. van \& Vrieze, K. (1982). Adv. Organomet. Chem. 21, 151-239.

